Saltar al contenido

Curvas técnicas y cíclicas

por José Antonio Cuadrado Vicente

Aplicación web

 


CURVAS TÉCNICAS:

Las curvas técnicas (óvalos, ovoides y espirales) están formadas por arcos de circunferencia tangentes.

Los óvalos y ovoides son curvas planas y cerradas, ya que empiezan y terminan en el mismo punto, compuestas por cuatro arcos de circunferencia tangentes interiores dos a dos.

Las espirales son curvas abiertas y planas generadas por un punto que se aleja del núcleo, aumentando constantemente su radio de giro.

 

ÓVALO DE TRES PARTES CONOCIDO EL EJE MAYOR.

 

Se divide el eje mayor AB en tres partes iguales, obteniendo los centros O1 y O2.

Con centro en O1 y O2 se dibujan las circunferencias iguales de radio AB/3. La intersección de las dos circunferencias determinan la posición de los centros O3 y O4.

Unimos los centros, como muestra el gráfico, para obtener los puntos de tangencia T1, T2, T3 y T4.

Con centro en O1 y radio O1-A, se traza el primer arco del óvalo.

Con centro en O3 y radio O3-T1, se traza otro arco del óvalo.

Con centro en O2 y radio O2-B, se traza otro arco del óvalo.

Por último, con centro en O4 y radio O4-T3 completamos el óvalo.

 

ÓVALO DE TRES PARTES CONOCIDO EL EJE MAYOR

 

ÓVALO DE CUATRO PARTES CONOCIDO EL EJE MAYOR.

 

Se divide el eje mayor AB en cuatro partes iguales, obteniendo los centros O1 y O2.

Con centro en O, O1 y O2 se dibujan las circunferencias iguales de radio AB/4. Los extremos del diámetro vertical en O serán los centros O3 y O4.

Unimos los centros, como muestra el gráfico, para obtener los puntos de tangencia T1, T2, T3 y T4.

Con centro en O1 y radio O1-A, se traza el primer arco del óvalo.

Con centro en O3 y radio O3-T1, se traza otro arco del óvalo.

Con centro en O2 y radio O2-B, se traza otro arco del óvalo.

Por último, con centro en O4 y radio O4-T3 completamos el óvalo.

 

ÓVALO DE CUATRO PARTES CONOCIDO EL EJE MAYOR

 

ÓVALO CONOCIDO EL EJE MENOR.

 

Se dibuja la circunferencia que pasa por C y D.

Los extremos del diámetro horizontal de la circunferencia O serán los centros O1 y O2. Los otros dos serán los puntos C y D.

Con centro en D y radio DC se traza el arco que va desde T1 a T2.

Con centro en C y radio CD se traza el arco que va desde T3 a T4.

Unimos los dos arcos trazados anteriormente con un arco de circunferencia de centro O1 y radio O1-T1.

Por último para completar el óvalo se traza el arco con centro O2 y radio O2-T3.

 

  ÓVALO CONOCIDO EL EJE MENOR

 

ÓVALO CONOCIDOS LOS DOS EJES.

 

Óvalo conociendo los dos ejes. Estos deben ser perpendiculares y cortarse en el punto medio 0. Unimos los extremos A-C.

Se traza la semicircunferencia que pasa por los extremos del eje mayor AB y se prolonga el eje menor hasta cortarla.

Con centro en C llevamos la diferencia de los semiejes sobre el segmento AC.

Al segmento resultante se le traza la mediatriz que al cortarse con los ejes determina la posición de los centros O1 y O4. Por simetría obtenemos los otros dos centros O2 y O3.

Uniendo los cuatro centros situamos la abertura de los ángulos que configuran el óvalo.

Con centro en O4 y radio O4-C, se traza el primer arco del óvalo.

Con centro en O3 y radio O3-D, se traza otro arco del óvalo.

Por último, con centro en O1 y O2 enlazamos los arcos trazados anteriormente completando el óvalo.

 

 

ÓVALO CONOCIDOS LOS DOS EJES

 

ÓVALO INSCRITO EN UN ROMBO.

 

Óvalo inscrito el rombo ABCD, cuyas diagonales se cortan en su punto medio O. Los extremos C y D serán los centros O1 y O2.

Desde el vértice D trazamos la perpendicular al lado AC y obtenemos el punto de tangencia T1.

Desde el vértice D trazamos la perpendicular al lado CB y obtenemos el punto de tangencia T2.

Desde el vértice C trazamos la perpendicular al lado BD y obtenemos el punto de tangencia T3.

Desde el vértice C trazamos la perpendicular al lado DA y obtenemos el punto de tangencia T4. La intersección de las perpendiculares trazadas con el eje mayor del rombo serán los centros O3 y O4.

Con centro en D y radio D-T1, se traza el primer arco del óvalo.

Con centro en C y radio C-T3, se traza otro arco del óvalo.

Por último, con centro en O1 y O2 enlazamos los arcos trazados anteriormente completando el óvalo.

 

 

ÓVALO INSCRITO EN UN ROMBO

ÓVALO ISOMÉTRICO.

 

El óvalo isométrico es igual al inscrito en un rombo de ángulos 60º y 120º. Sirve para representar la circunferencia en las tres posiciones espaciales del sistema isométrico.

Desde el vértice D trazamos la perpendicular al lado AC (que en este caso particular coincide con su punto medio) y obtenemos el punto de tangencia T1.

Desde el vértice D trazamos la perpendicular al lado CB (que en este caso particular coincide con su punto medio) y obtenemos el punto de tangencia T2.

Desde el vértice C trazamos la perpendicular al lado BD (que en este caso particular coincide con su punto medio) y obtenemos el punto de tangencia T3.

Desde el vértice C trazamos la perpendicular al lado DA (que en este caso particular coincide con su punto medio) y obtenemos el punto de tangencia T4. La intersección de las perpendiculares trazadas con el eje mayor del rombo serán los centros O3 y O4.

Con centro en D y radio D-T1, se traza el primer arco del óvalo.

Con centro en C y radio C-T3, se traza otro arco del óvalo.

Por último, con centro en O1 y O2 enlazamos los arcos trazados anteriormente completando el óvalo.

 

 

OVOIDE CONOCIDO SU EJE MENOR.

 

Se traza la mediatriz del eje menor CD, obteniendo el centro O1.

Se dibuja la circunferencia que pasa por C y D. Como se aprecia en el gráfico los centros O2, O3 y O4 están situados en los extremos de los diámetros vertical y horizontal.

Se unen los centros para situar los puntos de tangencia T1, T2, T3 y T4.

Con centro en O1 se traza el primer arco del ovoide de radio O1-A.

Con centro en O3 se traza el arco de radio O3-D, desde T3 hasta T1.

Con centro en O4 se traza el arco de radio O4-C, desde T2 hasta T4.

Con centro en O2 se traza el arco de radio O2-T1, desde T1 hasta T2.

OVOIDE CONOCIDO SU EJE MENOR

 

OVOIDE DETERMINADO POR DOS CIRCUNFERENCIAS.

 

Se resta el radio de la circunferencia menor O2 al de la mayor O1, y se traza la mediatriz del segmento que une r1-r2 con O2.

La intersección de la mediatriz trazada con el eje menor CD nos sitúa el centro O4, y por simetría se obtiene O3.

Se unen los centros para situar los puntos de tangencia T1, T2, T3 y T4.

Con centro en O1 se traza el primer arco del ovoide de radio O1-A.

Con centro en O3 se traza el arco de radio O3-D, desde T4 hasta T2.

Con centro en O4 se traza el arco de radio O4-C, desde T1 hasta T3.

Con centro en O2 se traza el arco de radio O2-B, desde T1 hasta T2.

  OVOIDE DETERMINADO POR DOS CIRCUNFERENCIAS.

 

OVOIDE DADO EL EJE MAYOR.

 

Ovoide dado el eje de simetría AB.

Se divide el eje en seis partes iguales por el teorema de Thales. Se sitúa el centro O1 en la segunda división y O2 en la quinta.

Se trazan las circunferencias tangentes de centros O1 y O2, y radios O1-A y O2-B respectivamente.

Los centros O3 y O4 estarán situados en los puntos simétricos de O1 respecto a los extremos del eje menor C y D.

Se unen los centros para situar los puntos de tangencia T1, T2, T3 y T4.

Con centro en O3 se traza el arco de radio O3-D, desde T4 hasta T2.

Con centro en O4 se traza el arco de radio O4-C, desde T1 hasta T3.

Con centro en O1 y O2 se trazan los arcos de radios O1-A y O2-B respectivamente.

 

OVOIDE DADO EL EJE MAYOR.

 

 

   

ESPIRAL DE DOS CENTROS.

 

Espiral de base el segmento AB. Los centros que generan la curva serán A y B alternativamente y los puntos de tangencia se encuentran sobre la recta que une A y B.

Se traza el arco de centro A y radio A-B y se obtiene el punto de tangencia 1.

Se traza el arco de centro B y radio B-1 y se obtiene el punto de tangencia 2. A la distancia B-2 se le denomina paso de la espiral.

Se traza el arco de centro A y radio A-2 y se obtiene el punto de tangencia 3.

Se traza el arco de centro B y radio B-3 y se obtiene el punto de tangencia 4.

Se traza el arco de centro A y radio A-4 y se obtiene el punto de tangencia 5.

Se traza el arco de centro B y radio B -5y se obtiene el punto de tangencia 6, y así sucesivamente.

 

ESPIRAL DE DOS CENTROS

 

ESPIRAL DE TRES CENTROS.

 

Espiral de base triangular ABC. Los centros que generan la curva serán A, B y C alternativamente.

Se prolongan los lados del triángulo equilátero formado por los puntos A, B y C. Sobre estas semirrectas estarán situados los puntos de tangencia de los arcos que dibujan la curva.

Se traza el arco de centro B y radio B-A y se obtiene el punto de tangencia 1.

Se traza el arco de centro C y radio C-1 y se obtiene el punto de tangencia 2.

Se traza el arco de centro A y radio A-2 y se obtiene el punto de tangencia 3. . A la distancia A-3 se le denomina paso de la espiral.

Se traza el arco de centro B y radio B-3 y se obtiene el punto de tangencia 4.

Se traza el arco de centro C y radio C-4 y se obtiene el punto de tangencia 5.

Se traza el arco de centro A y radio A-5 y se obtiene el punto de tangencia 6, y así sucesivamente.

 

ESPIRAL DE TRES CENTROS.

 

ESPIRAL DE CUATRO CENTROS.

 

Espiral de base cuadrangular ABCD. Los centros que generan la curva serán A, B, C y D alternativamente.

Se prolongan los lados del cuadrado formado por los puntos A, B, C y D. Sobre estas semirrectas estarán situados los puntos de tangencia de los arcos que dibujan la curva.

Se traza el arco de centro B y radio B-A y se obtiene el punto de tangencia 1.

Se traza el arco de centro C y radio C-1 y se obtiene el punto de tangencia 2.

Se traza el arco de centro D y radio D-2 y se obtiene el punto de tangencia 3.

Se traza el arco de centro A y radio A-3 y se obtiene el punto de tangencia 4. . A la distancia A-4 se le denomina paso de la espiral.

Se traza el arco de centro B y radio B-4 y se obtiene el punto de tangencia 5.

Se traza el arco de centro C y radio C-5 y se obtiene el punto de tangencia 6, y así sucesivamente.

 

ESPIRAL DE CUATRO CENTROS.

 

 

 

 

 

ESPIRAL ÁUREA.

 

Se denomina espiral áurea porque la razón de los radios consecutivos es igual al número de oro. Dibujamos un cuadrado de lado AD.

Se traza el rectángulo áureo cuyo lado menor sea AD, para ello llevamos la distancia M-1 sobre la horizontal.

Se dibuja el rectángulo uniendo los cuatro vértices A, B, C y D.

Con centro en C y radio C-1 se sitúa el punto 2, por el que dividimos el rectángulo en un cuadrado y un rectángulo áureo.

Con centro en B y radio B-2 se sitúa el punto 3, por el que dividimos el rectángulo en un cuadrado y un rectángulo áureo.

Repetimos la división de los rectángulos resultantes en un cuadrado y un rectángulo áureo.

Repetimos la división de los rectángulos resultantes en un cuadrado y un rectángulo áureo hasta que deseemos.

Dibujamos la espiral áurea formada por arcos de circunferencia tangentes interiores unos a otros, hasta completar el trazado.

 

ESPIRAL ÁUREA.

 

 

 

ESPIRAL LOGARÍTMICA.

 

También llamada mística o natural por ser la que se encuentra en la naturaleza más frecuentemente. Se trata de enlazar con arcos de circunferencia tangentes un polígono formado por segmentos perpendiculares.

Se traza la mediatriz del primer tramo AB, sobre la que se sitúa el centro O1 en cualquier lugar. La posición de este primer centro condiciona la forma final de la curva.

Se dibuja el arco de centro O1 y radio O1-A.

 

ESPIRAL LOGARÍTMICA.

 

 

ESPIRAL DE ARQUÍMEDES.

ESPIRAL DE ARQUÍMEDES.

 

Se considera un segmento OP que es el paso de la espiral. Con centro en O y radio OP se traza la circunferencia de la figura, la cual se divide en un número de partes iguales, p.e., 16 partes. Se divide el paso en el mismo número de partes iguales; los puntos de la espiral se obtienen al cortarse las circunferencias concéntricas con los radios que pasan por los mismos puntos de división.

HÉLICE CILÍNDRICA (Sinusoide).

La hélice cilíndrica es una curva alabeada cuya aplicación en mecánica y construcción es muy importante. Es una curva situada sobre la superficie de un cilindro de revolución cuya transformada es una recta. Dicha transformada es la diagonal del rectángulo que es desarrollo del cilindro sobre el que está trazada. Según esto, la hélice es el camino más corto entre dos puntos de la superficie cilíndrica y sus tangentes forman el mismo ángulo con las generatrices del cilindro; este ángulo es el que forma la diagonal con el lado mayor del rectángulo.

La hélice cilíndrica es la trayectoria del movimiento helicoidal componente de un movimiento circular y de otro rectilineo, ambos uniformes.

Paso de la hélice es la longitud comprendida entre dos pasos sucesivos de la hélice por una misma generatriz del cilindro. Se llama espira a la parte de la hélice comprendida en un paso, es decir, correspondiente a una vuelta completa de la curva.

HÉLICE CILÍNDRICA (Sinusoide).